Coexistence for systems governed by difference equations of Lotka-Volterra type.

نویسندگان

  • J Hofbauer
  • V Hutson
  • W Jansen
چکیده

The question of the long term survival of species in models governed by Lotka-Volterra difference equations is considered. The criterion used is the biologically realistic one of permanence, that is populations with all initial values positive must eventually all become greater than some fixed positive number. We show that in spite of the complex dynamics associated even with the simplest of such systems, it is possible to obtain readily applicable criteria for permanence in a wide range of cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extinction in Nonautonomous Discrete Lotka-Volterra Competitive System with Pure Delays and Feedback Controls

The coexistence and global stability of population models are of the interesting subjects in mathematical biology. Many authors have argued that the discrete time models are governed by differential equations which are more appropriate than the continuous ones to describe the dynamics of population when the population has nonoverlapping generations, a lot has been done on discrete Lotka-Volterr...

متن کامل

The Stability of Some Systems of Harvested Lotka-Volterra Predator-Prey Equations

Some scientists are interesting to study in area of harvested ecological modelling. The harvested population dynamics is more realistic than other ecological models. In the present paper, some of the Lotka-Volterra predator-prey models have been considered. In the said models, existing species are harvested by constant or variable growth rates. The behavior of their solutions has been analyzed ...

متن کامل

Minimal Coexistence Configurations for Multispecies Systems

We deal with strongly competing multispecies systems of Lotka-Volterra type with homogeneous Neumann boundary conditions in dumbbell-like domains. Under suitable non-degeneracy assumptions, we show that, as the competition rate grows indefinitely, the system reaches a state of coexistence of all the species in spatial segregation. Furthermore, the limit configuration is a local minimizer for th...

متن کامل

Limit cycles for competitor–competitor–mutualist Lotka–Volterra systems

It is known that a limit cycle (or periodic coexistence) can occur in a competitor–competitor–mutualist Lotka–Volterra system  ẋ1 = x1(r1 − a11x1 − a12x2 + a13x3), ẋ2 = x2(r2 − a21x1 − a22x2 + a23x3), ẋ3 = x3(r3 + a31x1 + a32x2 − a33x3), where ri , ai j are positive real constants [X. Liang, J. Jiang, The dynamical behavior of type-K competitive Kolmogorov systems and its applications to 3-di...

متن کامل

Approximate Controllability for Systems Governed by Nonlinear Volterra Type Equations

We study the control systems governed by abstract Volterra equations without uniqueness in a Banach space. By using the technique of the theory of condensing maps and multivalued analysis tools, we obtain the existence result, investigate the topological structure of the solution set, and prove the invariance of a reachability set of the control system under nonlinear perturbations. Examples co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 1987